

Working Effectively

with Legacy Code

Robert C. Martin Series

This series is directed at software developers, team-leaders,
business analysts, and managers who want to increase their

skills and proficiency to the level of a Master Craftsman.

The series contains books that guide software professionals
in the principles, patterns, and practices of programming,

software project management, requirements gathering,
design, analysis, testing, and others.

Working Effectively
with Legacy Code

Michael C. Feathers

Prentice Hall Professional Technical Reference
Upper Saddle River, NJ 07458
www,phptr.com

www,phptr.com

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.
Publisher: John Wait
Editor in Chief: Don O’Hagan
Acquisitions Editor: Paul Petralia
Editorial Assistant: Michelle Vincenti
Marketing Manager: Chris Guzikowski
Publicist: Kerry Guiliano
Cover Designer: Sandra Schroeder
Managing Editor: Gina Kanouse
Senior Project Editor: Lori Lyons
Copy Editor: Krista Hansing
Indexer: Lisa Stumpf
Compositor: Karen Kennedy
Proofreader: Debbie Williams
Manufacturing Buyer: Dan Uhrig

Prentice Hall offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding in-
terests. For more information, please contact:

U. S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:
International Sales
1-317-428-3341
international@pearsontechgroup.com

Visit us on the web: www.phptr.com
Library of Congress Cataloging-in-Publication Data: 2004108115

Copyright © 2005 Pearson Education, Inc.
Publishing as Prentice Hall PTR
All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

Other product or company names mentioned herein are the trademarks
or registered trademarks of their respective owners.
ISBN 0-13-117705-2

Text printed in the United States on recycled paper at Phoenix Book Tech.
First printing, September 2004

www.phptr.com

For Ann, Deborah, and Ryan,

the bright centers of my life.

— Michael

This page intentionally left blank

CONTENTS vii

Contents

Foreword by Robert C. Martin. xv

Preface . xv

Introduction . xxi

PART I: The Mechanics of Change. 1

Chapter 1: Changing Software . 3

Four Reasons to Change Software . 4
Risky Change . 7

Chapter 2: Working with Feedback . 9

What Is Unit Testing? . 12
Higher-Level Testing . 14
Test Coverings . 14
The Legacy Code Change Algorithm . 18

Chapter 3: Sensing and Separation . 21

Faking Collaborators . 23

Chapter 4: The Seam Model. 29

A Huge Sheet of Text . 29
Seams . 30
Seam Types . 33

Chapter 5: Tools. 45

Automated Refactoring Tools . 45
Mock Objects . 47
Unit-Testing Harnesses . 48
General Test Harnesses . 53

viii CONTENTS

PART II: Changing Software .55

Chapter 6: I Don’t Have Much Time and I Have to Change It. 57

Sprout Method .59
Sprout Class .63
Wrap Method .67
Wrap Class .71
Summary. 76

Chapter 7: It Takes Forever to Make a Change . 77

Understanding .77
Lag Time .78
Breaking Dependencies .79
Summary .85

Chapter 8: How Do I Add a Feature? . 87

Test-Driven Development (TDD) .88
Programming by Difference .94
Summary .104

Chapter 9: I Can’t Get This Class into a Test Harness 105

The Case of the Irritating Parameter .106
The Case of the Hidden Dependency .113
The Case of the Construction Blob .116
The Case of the Irritating Global Dependency118
The Case of the Horrible Include Dependencies127
The Case of the Onion Parameter .130
The Case of the Aliased Parameter .133

Chapter 10: I Can’t Run This Method in a Test Harness 137

The Case of the Hidden Method .138
The Case of the “Helpful” Language Feature141
The Case of the Undetectable Side Effect .144

Chapter 11: I Need to Make a Change. What Methods Should I Test? . . . 151

Reasoning About Effects .151
Reasoning Forward .157
Effect Propagation .163
Tools for Effect Reasoning .165
Learning from Effect Analysis .167
Simplifying Effect Sketches .168

CONTENTS ix

Chapter 12: I Need to Make Many Changes in One Area. 173

Interception Points . 174
Judging Design with Pinch Points . 182
Pinch Point Traps . 184

Chapter 13: I Need to Make a Change,
but I Don’t Know What Tests to Write 185

Characterization Tests . 186
Characterizing Classes . 189
Targeted Testing . 190
A Heuristic for Writing Characterization Tests 195

Chapter 14: Dependencies on Libraries Are Killing Me 197

Chapter 15: My Application Is All API Calls . 199

Chapter 16: I Don’t Understand the Code Well Enough to Change It 209

Notes/Sketching . 210
Listing Markup . 211
Scratch Refactoring . 212
Delete Unused Code . 213

Chapter 17: My Application Has No Structure . 215

Telling the Story of the System . 216
Naked CRC . 220
Conversation Scrutiny . 224

Chapter 18: My Test Code Is in the Way . 227

Class Naming Conventions . 227
Test Location . 228

Chapter 19: My Project Is Not Object Oriented.
How Do I Make Safe Changes?. 231

An Easy Case . 232
A Hard Case . 232
Adding New Behavior . 236
Taking Advantage of Object Orientation 239
It’s All Object Oriented . 242

Chapter 20: This Class Is Too Big and I Don’t Want It to Get Any Bigger . 245

Seeing Responsibilities . 249

x CONTENTS

Other Techniques .265
Moving Forward .265
After Extract Class .268

Chapter 21: I’m Changing the Same Code All Over the Place 269

First Steps .272

Chapter 22: I Need to Change a Monster Method
and I Can’t Write Tests for It . 289

Varieties of Monsters .290
Tackling Monsters with Automated Refactoring Support 294
The Manual Refactoring Challenge .297
Strategy .304

Chapter 23: How Do I Know That I’m Not Breaking Anything?. 309

Hyperaware Editing .310
Single-Goal Editing .311
Preserve Signatures .312
Lean on the Compiler .315

Chapter 24: We Feel Overwhelmed. It Isn’t Going to Get Any Better.319

PART III: Dependency-Breaking Techniques .323

Chapter 25: Dependency-Breaking Techniques . 325

Adapt Parameter .326
Break Out Method Object .330
Definition Completion .337
Encapsulate Global References .339
Expose Static Method .345
Extract and Override Call .348
Extract and Override Factory Method .350
Extract and Override Getter .352
Extract Implementer .356
Extract Interface .362
Introduce Instance Delegator .369
Introduce Static Setter .372
Link Substitution .377
Parameterize Constructor .379
Parameterize Method .383

CONTENTS xi

Primitivize Parameter . 385
Pull Up Feature . 388
Push Down Dependency . 392
Replace Function with Function Pointer . 396
Replace Global Reference with Getter . 399
Subclass and Override Method . 401
Supersede Instance Variable . 404
Template Redefinition . 408
Text Redefinition . 412

Appendix: Refactoring . 415

Extract Method . 415

Glossary . 421

Index . 423

This page intentionally left blank

FOREWORD xiii

Foreword

“…then it began…”
In his introduction to this book, Michael Feathers uses that phrase to

describe the start of his passion for software.
“…then it began…”
Do you know that feeling? Can you point to a single moment in your life and

say: “…then it began…”? Was there a single event that changed the course of
your life and eventually led you to pick up this book and start reading this fore-
word?

I was in sixth grade when it happened to me. I was interested in science and
space and all things technical. My mother found a plastic computer in a catalog
and ordered it for me. It was called Digi-Comp I. Forty years later that little
plastic computer holds a place of honor on my bookshelf. It was the catalyst
that sparked my enduring passion for software. It gave me my first inkling of
how joyful it is to write programs that solve problems for people. It was just
three plastic S-R flip-flops and six plastic and-gates, but it was enough—it
served. Then… for me… it began…

But the joy I felt soon became tempered by the realization that software sys-
tems almost always degrade into a mess. What starts as a clean crystalline
design in the minds of the programmers rots, over time, like a piece of bad
meat. The nice little system we built last year turns into a horrible morass of
tangled functions and variables next year.

Why does this happen? Why do systems rot? Why can’t they stay clean?
Sometimes we blame our customers. Sometimes we accuse them of changing

the requirements. We comfort ourselves with the belief that if the customers had
just been happy with what they said they needed, the design would have been
fine. It’s the customer’s fault for changing the requirements on us.

Well, here’s a news flash: Requirements change. Designs that cannot tolerate
changing requirements are poor designs to begin with. It is the goal of every
competent software developer to create designs that tolerate change.

This seems to be an intractably hard problem to solve. So hard, in fact, that
nearly every system ever produced suffers from slow, debilitating rot. The rot is
so pervasive that we’ve come up with a special name for rotten programs. We
call them: Legacy Code.

xiv FOREWORD

Legacy code. The phrase strikes disgust in the hearts of programmers. It con-
jures images of slogging through a murky swamp of tangled undergrowth with
leaches beneath and stinging flies above. It conjures odors of murk, slime, stag-
nancy, and offal. Although our first joy of programming may have been intense,
the misery of dealing with legacy code is often sufficient to extinguish that
flame.

Many of us have tried to discover ways to prevent code from becoming leg-
acy. We’ve written books on principles, patterns, and practices that can help
programmers keep their systems clean. But Michael Feathers had an insight that
many of the rest of us missed. Prevention is imperfect. Even the most disciplined
development team, knowing the best principles, using the best patterns, and fol-
lowing the best practices will create messes from time to time. The rot still accu-
mulates. It’s not enough to try to prevent the rot—you have to be able to
reverse it.

That’s what this book is about. It’s about reversing the rot. It’s about taking
a tangled, opaque, convoluted system and slowly, gradually, piece by piece, step
by step, turning it into a simple, nicely structured, well-designed system. It’s
about reversing entropy.

Before you get too excited, I warn you; reversing rot is not easy, and it’s not
quick. The techniques, patterns, and tools that Michael presents in this book
are effective, but they take work, time, endurance, and care. This book is not a
magic bullet. It won’t tell you how to eliminate all the accumulated rot in your
systems overnight. Rather, this book describes a set of disciplines, concepts, and
attitudes that you will carry with you for the rest of your career and that will
help you to turn systems that gradually degrade into systems that gradually
improve.

Robert C. Martin
29 June, 2004

PREFACE xv

Preface

Do you remember the first program you wrote? I remember mine. It was a little
graphics program I wrote on an early PC. I started programming later than
most of my friends. Sure, I’d seen computers when I was a kid. I remember
being really impressed by a minicomputer I once saw in an office, but for years
I never had a chance to even sit at a computer. Later, when I was a teenager,
some friends of mine bought a couple of the first TRS-80s. I was interested, but
I was actually a bit apprehensive, too. I knew that if I started to play with com-
puters, I’d get sucked into it. It just looked too cool. I don’t know why I knew
myself so well, but I held back. Later, in college, a roommate of mine had a
computer, and I bought a C compiler so that I could teach myself programming.
Then it began. I stayed up night after night trying things out, poring through
the source code of the emacs editor that came with the compiler. It was addic-
tive, it was challenging, and I loved it.

I hope you’ve had experiences like this—just the raw joy of making things
work on a computer. Nearly every programmer I ask has. That joy is part of
what got us into this work, but where is it day to day?

A few years ago, I gave my friend Erik Meade a call after I’d finished work
one night. I knew that Erik had just started a consulting gig with a new team, so
I asked him, “How are they doing?” He said, “They’re writing legacy code,
man.” That was one of the few times in my life when I was sucker-punched by
a coworker’s statement. I felt it right in my gut. Erik had given words to the pre-
cise feeling that I often get when I visit teams for the first time. They are trying
very hard, but at the end of the day, because of schedule pressure, the weight of
history, or a lack of any better code to compare their efforts to, many people
are writing legacy code.

What is legacy code? I’ve used the term without defining it. Let’s look at the
strict definition: Legacy code is code that we’ve gotten from someone else.
Maybe our company acquired code from another company; maybe people on
the original team moved on to other projects. Legacy code is somebody else’s
code. But in programmer-speak, the term means much more than that. The
term legacy code has taken on more shades of meaning and more weight over
time.

xvi PREFACE

What do you think about when you hear the term legacy code? If you are at
all like me, you think of tangled, unintelligible structure, code that you have to
change but don’t really understand. You think of sleepless nights trying to add
in features that should be easy to add, and you think of demoralization, the
sense that everyone on the team is so sick of a code base that it seems beyond
care, the sort of code that you just wish would die. Part of you feels bad for
even thinking about making it better. It seems unworthy of your efforts. That
definition of legacy code has nothing to do with who wrote it. Code can
degrade in many ways, and many of them have nothing to do with whether the
code came from another team.

In the industry, legacy code is often used as a slang term for difficult-to-change
code that we don’t understand. But over years of working with teams, helping
them get past serious code problems, I’ve arrived at a different definition.

To me, legacy code is simply code without tests. I’ve gotten some grief for
this definition. What do tests have to do with whether code is bad? To me, the
answer is straightforward, and it is a point that I elaborate throughout the
book:

You might think that this is severe. What about clean code? If a code base is
very clean and well structured, isn’t that enough? Well, make no mistake. I love
clean code. I love it more than most people I know, but while clean code is
good, it’s not enough. Teams take serious chances when they try to make large
changes without tests. It is like doing aerial gymnastics without a net. It
requires incredible skill and a clear understanding of what can happen at every
step. Knowing precisely what will happen if you change a couple of variables is
often like knowing whether another gymnast is going to catch your arms after
you come out of a somersault. If you are on a team with code that clear, you are
in a better position than most programmers. In my work, I’ve noticed that
teams with that degree of clarity in all of their code are rare. They seem like a
statistical anomaly. And, you know what? If they don’t have supporting tests,
their code changes still appear to be slower than those of teams that do.

Yes, teams do get better and start to write clearer code, but it takes a long
time for older code to get clearer. In many cases, it will never happen com-
pletely. Because of this, I have no problem defining legacy code as code without
tests. It is a good working definition, and it points to a solution.

I’ve been talking about tests quite a bit so far, but this book is not about test-
ing. This book is about being able to confidently make changes in any code

Code without tests is bad code. It doesn’t matter how well written it is; it doesn’t mat-
ter how pretty or object-oriented or well-encapsulated it is. With tests, we can change
the behavior of our code quickly and verifiably. Without them, we really don’t know
if our code is getting better or worse.

PREFACE xvii

base. In the following chapters, I describe techniques that you can use to under-
stand code, get it under test, refactor it, and add features.

One thing that you will notice as you read this book is that it is not a book
about pretty code. The examples that I use in the book are fabricated because I
work under nondisclosure agreements with clients. But in many of the exam-
ples, I’ve tried to preserve the spirit of code that I’ve seen in the field. I won’t
say that the examples are always representative. There certainly are oases of
great code out there, but, frankly, there are also pieces of code that are far
worse than anything I can use as an example in this book. Aside from client
confidentiality, I simply couldn’t put code like that in this book without boring
you to tears and burying important points in a morass of detail. As a result,
many of the examples are relatively brief. If you look at one of them and think
“No, he doesn’t understand—my methods are much larger than that and much
worse,” please look at the advice that I am giving at face value and see if it
applies, even if the example seems simpler.

The techniques here have been tested on substantially large pieces of code. It
is just a limitation of the book format that makes examples smaller. In particu-
lar, when you see ellipses (…) in a code fragment like this, you can read them as
“insert 500 lines of ugly code here”:

m_pDispatcher->register(listener);
...
m_nMargins++;

If this book is not about pretty code, it is even less about pretty design. Good
design should be a goal for all of us, but in legacy code, it is something that we
arrive at in discrete steps. In some of the chapters, I describe ways of adding
new code to existing code bases and show how to add it with good design prin-
ciples in mind. You can start to grow areas of very good high-quality code in
legacy code bases, but don’t be surprised if some of the steps you take to make
changes involve making some code slightly uglier. This work is like surgery. We
have to make incisions, and we have to move through the guts and suspend
some aesthetic judgment. Could this patient’s major organs and viscera be bet-
ter than they are? Yes. So do we just forget about his immediate problem, sew
him up again, and tell him to eat right and train for a marathon? We could, but
what we really need to do is take the patient as he is, fix what’s wrong, and
move him to a healthier state. He might never become an Olympic athlete, but
we can’t let “best” be the enemy of “better.” Code bases can become healthier
and easier to work in. When a patient feels a little better, often that is the time
when you can help him make commitments to a healthier life style. That is
what we are shooting for with legacy code. We are trying to get to the point at

xviii PREFACE

which we are used to ease; we expect it and actively attempt to make code
change easier. When we can sustain that sense on a team, design gets better.

The techniques I describe are ones that I’ve discovered and learned with
coworkers and clients over the course of years working with clients to try to
establish control over unruly code bases. I got into this legacy code emphasis
accidentally. When I first started working with Object Mentor, the bulk of my
work involved helping teams with serious problems develop their skills and
interactions to the point that they could regularly deliver quality code. We often
used Extreme Programming practices to help teams take control of their work,
collaborate intensively, and deliver. I often feel that Extreme Programming is
less a way to develop software than it is a way to make a well-jelled work team
that just happens to deliver great software every two weeks.

From the beginning, though, there was a problem. Many of the first XP
projects were “greenfield” projects. The clients I was seeing had significantly
large code bases, and they were in trouble. They needed some way to get con-
trol of their work and start to deliver. Over time, I found that I was doing the
same things over and over again with clients. This sense culminated in some
work I was doing with a team in the financial industry. Before I’d arrived,
they’d realized that unit testing was a great thing, but the tests that they were
executing were full scenario tests that made multiple trips to a database and
exercised large chunks of code. The tests were hard to write, and the team
didn’t run them very often because they took so long to run. As I sat down with
them to break dependencies and get smaller chunks of code under test, I had a
terrible sense of déjà vu. It seemed that I was doing this sort of work with every
team I met, and it was the sort of thing that no one really wanted to think
about. It was just the grunge work that you do when you want to start working
with your code in a controlled way, if you know how to do it. I decided then
that it was worth really reflecting on how we were solving these problems and
writing them down so that teams could get a leg up and start to make their code
bases easier to live in.

A note about the examples: I’ve used examples in several different program-
ming languages. The bulk of the examples are written in Java, C++, and C. I
picked Java because it is a very common language, and I included C++ because it
presents some special challenges in a legacy environment. I picked C because it
highlights many of the problems that come up in procedural legacy code. Among
them, these languages cover much of the spectrum of concerns that arise in leg-
acy code. However, if the languages you use are not covered in the examples,
take a look at them anyway. Many of the techniques that I cover can be used in
other languages, such as Delphi, Visual Basic, COBOL, and FORTRAN.

PREFACE xix

I hope that you find the techniques in this book helpful and that they allow
you to get back to what is fun about programming. Programming can be very
rewarding and enjoyable work. If you don’t feel that in your day-to-day work, I
hope that the techniques I offer you in this book help you find it and grow it on
your team.

Acknowledgments

First of all, I owe a serious debt to my wife, Ann, and my children, Deborah
and Ryan. Their love and support made this book and all of the learning that
preceded it possible. I’d also like to thank “Uncle Bob” Martin, president and
founder of Object Mentor. His rigorous pragmatic approach to development
and design, separating the critical from the inconsequential, gave me something
to latch upon about 10 years ago, back when it seemed that I was about to
drown in a wave of unrealistic advice. And thanks, Bob, for giving me the
opportunity to see more code and work with more people over the past five
years than I ever imagined possible.

I also have to thank Kent Beck, Martin Fowler, Ron Jeffries, and Ward Cun-
ningham for offering me advice at times and teaching me a great deal about
team work, design, and programming. Special thanks to all of the people who
reviewed the drafts. The official reviewers were Sven Gorts, Robert C. Martin,
Erik Meade, and Bill Wake; the unofficial reviewers were Dr. Robert Koss,
James Grenning, Lowell Lindstrom, Micah Martin, Russ Rufer and the Silicon
Valley Patterns Group, and James Newkirk.

Thanks also to reviewers of the very early drafts I placed on the Internet.
Their feedback significantly affected the direction of the book after I reorga-
nized its format. I apologize in advance to any of you I may have left out. The
early reviewers were: Darren Hobbs, Martin Lippert, Keith Nicholas, Phlip
Plumlee, C. Keith Ray, Robert Blum, Bill Burris, William Caputo, Brian Mar-
ick, Steve Freeman, David Putman, Emily Bache, Dave Astels, Russel Hill,
Christian Sepulveda, and Brian Christopher Robinson.

Thanks also to Joshua Kerievsky who gave a key early review and Jeff Langr
who helped with advice and spot reviews all through the process.

The reviewers helped me polish the draft considerably, but if there are errors
remaining, they are solely mine.

Thanks to Martin Fowler, Ralph Johnson, Bill Opdyke, Don Roberts, and
John Brant for their work in the area of refactoring. It has been inspirational.

xx PREFACE

I also owe a special debt to Jay Packlick, Jacques Morel, and Kelly Mower of
Sabre Holdings, and Graham Wright of Workshare Technology for their support
and feedback.

Special thanks also to Paul Petralia, Michelle Vincenti, Lori Lyons, Krista
Hansing, and the rest of the team at Prentice-Hall. Thank you, Paul, for all of
the help and encouragement that this first-time author needed.

Special thanks also to Gary and Joan Feathers, April Roberts, Dr. Raimund
Ege, David Lopez de Quintana, Carlos Perez, Carlos M. Rodriguez, and the late
Dr. John C. Comfort for help and encouragement over the years. I also have to
thank Brian Button for the example in Chapter 21, I’m Changing the Same
Code All Over the Place. He wrote that code in about an hour when we were
developing a refactoring course together, and it’s become my favorite piece of
teaching code.

Also, special thanks to Janik Top, whose instrumental De Futura served as
the soundtrack for my last few weeks of work on this book.

Finally, I’d like to thank everyone whom I’ve worked with over the past few
years whose insights and challenges strengthened the material in this book.

Michael Feathers
mfeathers@objectmentor.com
www.objectmentor.com
www.michaelfeathers.com

www.objectmentor.com
www.michaelfeathers.com

xxi

Introduction

How to Use This Book

I tried several different formats before settling on the current one for this book.
Many of the different techniques and practices that are useful when working
with legacy code are hard to explain in isolation. The simplest changes often go
easier if you can find seams, make fake objects, and break dependencies using a
couple of dependency-breaking techniques. I decided that the easiest way to
make the book approachable and handy would be to organize the bulk of it
(Part II, Changing Software) in FAQ (frequently asked questions) format.
Because specific techniques often require the use of other techniques, the FAQ
chapters are heavily interlinked. In nearly every chapter, you’ll find references,
along with page numbers, for other chapters and sections that describe particu-
lar techniques and refactorings. I apologize if this causes you to flip wildly
through the book as you attempt to find answers to your questions, but I
assumed that you’d rather do that than read the book cover to cover, trying to
understand how all the techniques operate.

In Changing Software, I’ve tried to address very common questions that
come up in legacy code work. Each of the chapters is named after a specific
problem. This does make the chapter titles rather long, but hopefully, they will
allow you to quickly find a section that helps you with the particular problems
you are having.

Changing Software is bookended by a set of introductory chapters (Part I,
The Mechanics of Change) and a catalog of refactorings, which are very useful
in legacy code work (Part III, Dependency-Breaking Techniques). Please read
the introductory chapters, particularly Chapter 4, The Seam Model. These
chapters provide the context and nomenclature for all the techniques that fol-
low. In addition, if you find a term that isn’t described in context, look for it in
the Glossary.

The refactorings in Dependency-Breaking Techniques are special in that they
are meant to be done without tests, in the service of putting tests in place. I
encourage you to read each of them so that you can see more possibilities as
you start to tame your legacy code.

3

Changing
Software

Chapter 1

Changing Software

Changing code is great. It’s what we do for a living. But there are ways of
changing code that make life difficult, and there are ways that make it much
easier. In the industry, we haven’t spoken about that much. The closest we’ve
gotten is the literature on refactoring. I think we can broaden the discussion a
bit and talk about how to deal with code in the thorniest of situations. To do
that, we have to dig deeper into the mechanics of change.

Four Reasons to Change Software

For simplicity’s sake, let’s look at four primary reasons to change software.

1. Adding a feature

2. Fixing a bug

3. Improving the design

4. Optimizing resource usage

Adding Features and Fixing Bugs

Adding a feature seems like the most straightforward type of change to make.
The software behaves one way, and users say that the system needs to do some-
thing else also.

Suppose that we are working on a web-based application, and a manager
tells us that she wants the company logo moved from the left side of a page to
the right side. We talk to her about it and discover it isn’t quite so simple. She
wants to move the logo, but she wants other changes, too. She’d like to make it
animated for the next release. Is this fixing a bug or adding a new feature? It
depends on your point of view. From the point of view of the customer, she is
definitely asking us to fix a problem. Maybe she saw the site and attended a

4 CHANGING SOFTWARE

Four Reasons
to Change

Software

meeting with people in her department, and they decided to change the logo
placement and ask for a bit more functionality. From a developer’s point of
view, the change could be seen as a completely new feature. “If they just
stopped changing their minds, we’d be done by now.” But in some organiza-
tions the logo move is seen as just a bug fix, regardless of the fact that the team
is going to have to do a lot of fresh work.

It is tempting to say that all of this is just subjective. You see it as a bug fix,
and I see it as a feature, and that’s the end of it. Sadly, though, in many organi-
zations, bug fixes and features have to be tracked and accounted for separately
because of contracts or quality initiatives. At the people level, we can go back
and forth endlessly about whether we are adding features or fixing bugs, but it
is all just changing code and other artifacts. Unfortunately, this talk about bug-
fixing and feature addition masks something that is much more important to us
technically: behavioral change. There is a big difference between adding new
behavior and changing old behavior.

In the company logo example, are we adding behavior? Yes. After the
change, the system will display a logo on the right side of the page. Are we get-
ting rid of any behavior? Yes, there won’t be a logo on the left side.

Let’s look at a harder case. Suppose that a customer wants to add a logo to
the right side of a page, but there wasn’t one on the left side to start with. Yes,
we are adding behavior, but are we removing any? Was anything rendered in
the place where the logo is about to be rendered?

Are we changing behavior, adding it, or both?
It turns out that, for us, we can draw a distinction that is more useful to us as

programmers. If we have to modify code (and HTML kind of counts as code),
we could be changing behavior. If we are only adding code and calling it, we are
often adding behavior. Let’s look at another example. Here is a method on a
Java class:

public class CDPlayer
{
 public void addTrackListing(Track track) {
 ...
 }
 ...
}

The class has a method that enables us to add track listings. Let’s add
another method that lets us replace track listings.

Behavior is the most important thing about software. It is what users depend on.
Users like it when we add behavior (provided it is what they really wanted), but if we
change or remove behavior they depend on (introduce bugs), they stop trusting us.

FOUR REASONS TO CHANGE SOFTWARE 5

Four Reasons
to Change
Software

public class CDPlayer
{
 public void addTrackListing(Track track) {
 ...
 }

 public void replaceTrackListing(String name, Track track) {
 ...
 }
 ...
}

When we added that method, did we add new behavior to our application or
change it? The answer is: neither. Adding a method doesn’t change behavior
unless the method is called somehow.

Let’s make another code change. Let’s put a new button on the user interface
for the CD player. The button lets users replace track listings. With that move,
we’re adding the behavior we specified in replaceTrackListing method, but we’re
also subtly changing behavior. The UI will render differently with that new but-
ton. Chances are, the UI will take about a microsecond longer to display. It
seems nearly impossible to add behavior without changing it to some degree.

Improving Design

Design improvement is a different kind of software change. When we want to
alter software’s structure to make it more maintainable, generally we want to
keep its behavior intact also. When we drop behavior in that process, we often
call that a bug. One of the main reasons why many programmers don’t attempt
to improve design often is because it is relatively easy to lose behavior or create
bad behavior in the process of doing it.

The act of improving design without changing its behavior is called refactor-
ing. The idea behind refactoring is that we can make software more maintain-
able without changing behavior if we write tests to make sure that existing
behavior doesn’t change and take small steps to verify that all along the pro-
cess. People have been cleaning up code in systems for years, but only in the last
few years has refactoring taken off. Refactoring differs from general cleanup in
that we aren’t just doing low-risk things such as reformatting source code, or
invasive and risky things such as rewriting chunks of it. Instead, we are making
a series of small structural modifications, supported by tests to make the code
easier to change. The key thing about refactoring from a change point of view is
that there aren’t supposed to be any functional changes when you refactor
(although behavior can change somewhat because the structural changes that
you make can alter performance, for better or worse).

6 CHANGING SOFTWARE

Four Reasons
to Change

Software

Optimization

Optimization is like refactoring, but when we do it, we have a different goal.
With both refactoring and optimization, we say, “We’re going to keep function-
ality exactly the same when we make changes, but we are going to change
something else.” In refactoring, the “something else” is program structure; we
want to make it easier to maintain. In optimization, the “something else” is
some resource used by the program, usually time or memory.

Putting It All Together

It might seem strange that refactoring and optimization are kind of similar.
They seem much closer to each other than adding features or fixing bugs. But is
this really true? The thing that is common between refactoring and optimiza-
tion is that we hold functionality invariant while we let something else change.

In general, three different things can change when we do work in a system:
structure, functionality, and resource usage.

Let’s look at what usually changes and what stays more or less the same
when we make four different kinds of changes (yes, often all three change, but
let’s look at what is typical):

Superficially, refactoring and optimization do look very similar. They hold
functionality invariant. But what happens when we account for new functional-
ity separately? When we add a feature often we are adding new functionality,
but without changing existing functionality.

Adding a Feature Fixing a Bug Refactoring Optimizing

Structure Changes Changes Changes —

Functionality Changes Changes — —

Resource Usage — — — Changes

Adding a Feature Fixing a Bug Refactoring Optimizing

Structure Changes Changes Changes —

New
Functionality

Changes — — —

Functionality — Changes — —

Resource Usage — — — Changes

RISKY CHANGE 7

Risky Change

Adding features, refactoring, and optimizing all hold existing functionality
invariant. In fact, if we scrutinize bug fixing, yes, it does change functionality,
but the changes are often very small compared to the amount of existing func-
tionality that is not altered.

Feature addition and bug fixing are very much like refactoring and optimiza-
tion. In all four cases, we want to change some functionality, some behavior,
but we want to preserve much more (see Figure 1.1).

Figure 1.1 Preserving behavior.

That’s a nice view of what is supposed to happen when we make changes,
but what does it mean for us practically? On the positive side, it seems to tell us
what we have to concentrate on. We have to make sure that the small number
of things that we change are changed correctly. On the negative side, well, that
isn’t the only thing we have to concentrate on. We have to figure out how to
preserve the rest of the behavior. Unfortunately, preserving it involves more
than just leaving the code alone. We have to know that the behavior isn’t
changing, and that can be tough. The amount of behavior that we have to pre-
serve is usually very large, but that isn’t the big deal. The big deal is that we
often don’t know how much of that behavior is at risk when we make our
changes. If we knew, we could concentrate on that behavior and not care about
the rest. Understanding is the key thing that we need to make changes safely.

Risky Change

Preserving behavior is a large challenge. When we need to make changes and
preserve behavior, it can involve considerable risk.

Preserving existing behavior is one of the largest challenges in software development.
Even when we are changing primary features, we often have very large areas of
behavior that we have to preserve.

Existing Behavior New Behavior

8 CHANGING SOFTWARE

Risky Change
To mitigate risk, we have to ask three questions:

1. What changes do we have to make?

2. How will we know that we’ve done them correctly?

3. How will we know that we haven’t broken anything?

How much change can you afford if changes are risky?
Most teams that I’ve worked with have tried to manage risk in a very conser-

vative way. They minimize the number of changes that they make to the code
base. Sometimes this is a team policy: “If it’s not broke, don’t fix it.” At other
times, it isn’t anything that anyone articulates. The developers are just very cau-
tious when they make changes. “What? Create another method for that? No,
I’ll just put the lines of code right here in the method, where I can see them and
the rest of the code. It involves less editing, and it’s safer.”

It’s tempting to think that we can minimize software problems by avoiding
them, but, unfortunately, it always catches up with us. When we avoid creating
new classes and methods, the existing ones grow larger and harder to under-
stand. When you make changes in any large system, you can expect to take a
little time to get familiar with the area you are working with. The difference
between good systems and bad ones is that, in the good ones, you feel pretty
calm after you’ve done that learning, and you are confident in the change you
are about to make. In poorly structured code, the move from figuring things out
to making changes feels like jumping off a cliff to avoid a tiger. You hesitate and
hesitate. “Am I ready to do it? Well, I guess I have to.”

Avoiding change has other bad consequences. When people don’t make
changes often they get rusty at it. Breaking down a big class into pieces can be
pretty involved work unless you do it a couple of times a week. When you do, it
becomes routine. You get better at figuring out what can break and what can’t,
and it is much easier to do.

The last consequence of avoiding change is fear. Unfortunately, many teams
live with incredible fear of change and it gets worse every day. Often they aren’t
aware of how much fear they have until they learn better techniques and the
fear starts to fade away.

We’ve talked about how avoiding change is a bad thing, but what is our
alternative? One alternative is to just try harder. Maybe we can hire more peo-
ple so that there is enough time for everyone to sit and analyze, to scrutinize all
of the code and make changes the “right” way. Surely more time and scrutiny
will make change safer. Or will it? After all of that scrutiny, will anyone know
that they’ve gotten it right?

29

The Seam
Model

Chapter 4

The Seam Model

One of the things that nearly everyone notices when they try to write tests for
existing code is just how poorly suited code is to testing. It isn’t just particular
programs or languages. In general, programming languages just don’t seem to
support testing very well. It seems that the only ways to end up with an easily
testable program are to write tests as you develop it or spend a bit of time trying
to “design for testability.” There is a lot of hope for the former approach, but if
much of the code in the field is evidence, the latter hasn’t been very successful.

One thing that I’ve noticed is that, in trying to get code under test, I’ve
started to think about code in a rather different way. I could just consider this
some private quirk, but I’ve found that this different way of looking at code
helps me when I work in new and unfamiliar programming languages. Because
I won’t be able to cover every programming language in this book, I’ve decided
to outline this view here in the hope that it helps you as well as it helps me.

A Huge Sheet of Text

When I first started programming, I was lucky that I started late enough to have
a machine of my own and a compiler to run on that machine; many of my
friends starting programming in the punch-card days. When I decided to study
programming in school, I started working on a terminal in a lab. We could
compile our code remotely on a DEC VAX machine. There was a little account-
ing system in place. Each compile cost us money out of our account, and we
had a fixed amount of machine time each term.

At that point in my life, a program was just a listing. Every couple of hours,
I’d walk from the lab to the printer room, get a printout of my program and
scrutinize it, trying to figure out what was right or wrong. I didn’t know enough
to care much about modularity. We had to write modular code to show that we
could do it, but at that point I really cared more about whether the code was

30 THE SEAM MODEL

Seams

going to produce the right answers. When I got around to writing object-ori-
ented code, the modularity was rather academic. I wasn’t going to be swapping
in one class for another in the course of a school assignment. When I got out in
the industry, I started to care a lot about those things, but in school, a program
was just a listing to me, a long set of functions that I had to write and under-
stand one by one.

This view of a program as a listing seems accurate, at least if we look at how
people behave in relation to programs that they write. If we knew nothing
about what programming was and we saw a room full of programmers work-
ing, we might think that they were scholars inspecting and editing large impor-
tant documents. A program can seem like a large sheet of text. Changing a little
text can cause the meaning of the whole document to change, so people make
those changes carefully to avoid mistakes.

Superficially, that is all true, but what about modularity? We are often told it
is better to write programs that are made of small reusable pieces, but how
often are small pieces reused independently? Not very often. Reuse is tough.
Even when pieces of software look independent, they often depend upon each
other in subtle ways.

Seams

When you start to try to pull out individual classes for unit testing, often you
have to break a lot of dependencies. Interestingly enough, you often have a lot
of work to do, regardless of how “good” the design is. Pulling classes out of
existing projects for testing really changes your idea of what “good” is with
regard to design. It also leads you to think of software in a completely different
way. The idea of a program as a sheet of text just doesn’t cut it anymore. How
should we look at it? Let’s take a look at an example, a function in C++.

bool CAsyncSslRec::Init()
{
 if (m_bSslInitialized) {
 return true;
 }
 m_smutex.Unlock();
 m_nSslRefCount++;

 m_bSslInitialized = true;

 FreeLibrary(m_hSslDll1);
 m_hSslDll1=0;
 FreeLibrary(m_hSslDll2);

SEAMS 31

Seams

 m_hSslDll2=0;

 if (!m_bFailureSent) {
 m_bFailureSent=TRUE;
 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);
 }

 CreateLibrary(m_hSslDll1,”syncesel1.dll”);
 CreateLibrary(m_hSslDll2,”syncesel2.dll”);

 m_hSslDll1->Init();
 m_hSslDll2->Init();

 return true;
}

It sure looks like just a sheet of text, doesn’t it? Suppose that we want to run
all of that method except for this line:

 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);

How would we do that?
It’s easy, right? All we have to do is go into the code and delete that line.
Okay, let’s constrain the problem a little more. We want to avoid executing

that line of code because PostReceiveError is a global function that communi-
cates with another subsystem, and that subsystem is a pain to work with
under test. So the problem becomes, how do we execute the method without
calling PostReceiveError under test? How do we do that and still allow the call
to PostReceiveError in production?

To me, that is a question with many possible answers, and it leads to the idea
of a seam.

Here’s the definition of a seam. Let’s take a look at it and then some examples.

Is there a seam at the call to PostReceiveError? Yes. We can get rid of the
behavior there in a couple of ways. Here is one of the most straightforward
ones. PostReceiveError is a global function, it isn’t part of the CAsynchSslRec class.
What happens if we add a method with the exact same signature to the CAsynch-
SslRec class?

class CAsyncSslRec
{
 ...

virtual void PostReceiveError(UINT type, UINT errorcode);
 ...
};

Seam

A seam is a place where you can alter behavior in your program without editing in
that place.

32 THE SEAM MODEL

Seams

In the implementation file, we can add a body for it like this:

void CAsyncSslRec::PostReceiveError(UINT type, UINT errorcode)
{
 ::PostReceiveError(type, errorcode);
}

That change should preserve behavior. We are using this new method to dele-
gate to the global PostReceiveError function using C++’s scoping operator (::). We
have a little indirection there, but we end up calling the same global function.

Okay, now what if we subclass the CAsyncSslRec class and override the
PostReceiveError method?

class TestingAsyncSslRec : public CAsyncSslRec
{

virtual void PostReceiveError(UINT type, UINT errorcode)
 {
 }
};

If we do that and go back to where we are creating our CAsyncSslRec and cre-
ate a TestingAsyncSslRec instead, we’ve effectively nulled out the behavior of the
call to PostReceiveError in this code:

bool CAsyncSslRec::Init()
{
 if (m_bSslInitialized) {
 return true;
 }
 m_smutex.Unlock();
 m_nSslRefCount++;

 m_bSslInitialized = true;

 FreeLibrary(m_hSslDll1);
 m_hSslDll1=0;
 FreeLibrary(m_hSslDll2);
 m_hSslDll2=0;

 if (!m_bFailureSent) {
 m_bFailureSent=TRUE;
 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);
 }

 CreateLibrary(m_hSslDll1,"syncesel1.dll");
 CreateLibrary(m_hSslDll2,"syncesel2.dll");

 m_hSslDll1->Init();
 m_hSslDll2->Init();

 return true;
}

SEAM TYPES 33

Seam Types

Now we can write tests for that code without the nasty side effect.
This seam is what I call an object seam. We were able to change the method

that is called without changing the method that calls it. Object seams are avail-
able in object-oriented languages, and they are only one of many different kinds
of seams.

Why seams? What is this concept good for?
One of the biggest challenges in getting legacy code under test is breaking

dependencies. When we are lucky, the dependencies that we have are small and
localized; but in pathological cases, they are numerous and spread out through-
out a code base. The seam view of software helps us see the opportunities that
are already in the code base. If we can replace behavior at seams, we can selec-
tively exclude dependencies in our tests. We can also run other code where
those dependencies were if we want to sense conditions in the code and write
tests against those conditions. Often this work can help us get just enough tests
in place to support more aggressive work.

Seam Types

The types of seams available to us vary among programming languages. The
best way to explore them is to look at all of the steps involved in turning the
text of a program into running code on a machine. Each identifiable step
exposes different kinds of seams.

Preprocessing Seams

In most programming environments, program text is read by a compiler. The
compiler then emits object code or bytecode instructions. Depending on the lan-
guage, there can be later processing steps, but what about earlier steps?

Only a couple of languages have a build stage before compilation. C and
C++ are the most common of them.

In C and C++, a macro preprocessor runs before the compiler. Over the
years, the macro preprocessor has been cursed and derided incessantly. With it,
we can take lines of text as innocuous looking as this:

TEST(getBalance,Account)
{
 Account account;
 LONGS_EQUAL(0, account.getBalance());
}

and have them appear like this to the compiler.

34 THE SEAM MODEL

Seam Types

 class AccountgetBalanceTest : public Test
 { public: AccountgetBalanceTest () : Test ("getBalance" "Test") {}
 void run (TestResult& result_); }
 AccountgetBalanceInstance;
 void AccountgetBalanceTest::run (TestResult& result_)
{
 Account account;
{ result_.countCheck();
 long actualTemp = (account.getBalance());
 long expectedTemp = (0);
 if ((expectedTemp) != (actualTemp))
{ result_.addFailure (Failure (name_, "c:\\seamexample.cpp", 24,
StringFrom(expectedTemp),
StringFrom(actualTemp))); return; } }

}

We can also nest code in conditional compilation statements like this to sup-
port debugging and different platforms (aarrrgh!):

...
m_pRtg->Adj(2.0);

#ifdef DEBUG
#ifndef WINDOWS
 { FILE *fp = fopen(TGLOGNAME,"w");
 if (fp) { fprintf(fp,"%s", m_pRtg->pszState); fclose(fp); }}
#endif

m_pTSRTable->p_nFlush |= GF_FLOT;
#endif

...

It’s not a good idea to use excessive preprocessing in production code
because it tends to decrease code clarity. The conditional compilation directives
(#ifdef, #ifndef, #if, and so on) pretty much force you to maintain several differ-
ent programs in the same source code. Macros (defined with #define) can be
used to do some very good things, but they just do simple text replacement. It is
easy to create macros that hide terribly obscure bugs.

These considerations aside, I’m actually glad that C and C++ have a preproces-
sor because the preprocessor gives us more seams. Here is an example. In a C pro-
gram, we have dependencies on a library routine named db_update. The db_update
function talks directly to a database. Unless we can substitute in another imple-
mentation of the routine, we can’t sense the behavior of the function.

#include <DFHLItem.h>
#include <DHLSRecord.h>

SEAM TYPES 35

Seam Types

extern int db_update(int, struct DFHLItem *);

void account_update(
 int account_no, struct DHLSRecord *record, int activated)
{
 if (activated) {
 if (record->dateStamped && record->quantity > MAX_ITEMS) {
 db_update(account_no, record->item);
 } else {
 db_update(account_no, record->backup_item);
 }
 }
 db_update(MASTER_ACCOUNT, record->item);
}

We can use preprocessing seams to replace the calls to db_update. To do this,
we can introduce a header file called localdefs.h.

#include <DFHLItem.h>
#include <DHLSRecord.h>

extern int db_update(int, struct DFHLItem *);

#include "localdefs.h"

void account_update(
 int account_no, struct DHLSRecord *record, int activated)
{
 if (activated) {
 if (record->dateStamped && record->quantity > MAX_ITEMS) {
 db_update(account_no, record->item);
 } else {
 db_update(account_no, record->backup_item);
 }
 }
 db_update(MASTER_ACCOUNT, record->item);
}

Within it, we can provide a definition for db_update and some variables that
will be helpful for us:

#ifdef TESTING
...
struct DFHLItem *last_item = NULL;
int last_account_no = -1;

#define db_update(account_no,item)\
 {last_item = (item); last_account_no = (account_no);}
...
#endif

36 THE SEAM MODEL

Seam Types

With this replacement of db_update in place, we can write tests to verify that
db_update was called with the right parameters. We can do it because the #include
directive of the C preprocessor gives us a seam that we can use to replace text
before it is compiled.

Preprocessing seams are pretty powerful. I don’t think I’d really want a pre-
processor for Java and other more modern languages, but it is nice to have this
tool in C and C++ as compensation for some of the other testing obstacles they
present.

I didn’t mention it earlier, but there is something else that is important to
understand about seams: Every seam has an enabling point. Let’s look at the def-
inition of a seam again:

When you have a seam, you have a place where behavior can change. We
can’t really go to that place and change the code just to test it. The source code
should be the same in both production and test. In the previous example, we
wanted to change the behavior at the text of the db_update call. To exploit that
seam, you have to make a change someplace else. In this case, the enabling
point is a preprocessor define named TESTING. When TESTING is defined, the local-
defs.h file defines macros that replace calls to db_update in the source file.

Link Seams

In many language systems, compilation isn’t the last step of the build process.
The compiler produces an intermediate representation of the code, and that rep-
resentation contains calls to code in other files. Linkers combine these represen-
tations. They resolve each of the calls so that you can have a complete program
at runtime.

In languages such as C and C++, there really is a separate linker that does the
operation I just described. In Java and similar languages, the compiler does the
linking process behind the scenes. When a source file contains an import state-
ment, the compiler checks to see if the imported class really has been compiled.
If the class hasn’t been compiled, it compiles it, if necessary, and then checks to
see if all of its calls will really resolve correctly at runtime.

Seam

A seam is a place where you can alter behavior in your program without editing in
that place.

Enabling Point

Every seam has an enabling point, a place where you can make the decision to use
one behavior or another.

SEAM TYPES 37

Seam Types

Regardless of which scheme your language uses to resolve references, you
can usually exploit it to substitute pieces of a program. Let’s look at the Java
case. Here is a little class called FitFilter:

package fitnesse;

import fit.Parse;
import fit.Fixture;

import java.io.*;
import java.util.Date;

import java.io.*;
import java.util.*;

public class FitFilter {

 public String input;
 public Parse tables;
 public Fixture fixture = new Fixture();
 public PrintWriter output;

 public static void main (String argv[]) {
 new FitFilter().run(argv);
 }

 public void run (String argv[]) {
 args(argv);
 process();
 exit();
 }

 public void process() {
 try {
 tables = new Parse(input);
 fixture.doTables(tables);
 } catch (Exception e) {
 exception(e);
 }
 tables.print(output);
 }
 ...
}

In this file, we import fit.Parse and fit.Fixture. How do the compiler and the
JVM find those classes? In Java, you can use a classpath environment variable
to determine where the Java system looks to find those classes. You can actually
create classes with the same names, put them into a different directory, and

38 THE SEAM MODEL

Seam Types

alter the classpath to link to a different fit.Parse and fit.Fixture. Although it
would be confusing to use this trick in production code, when you are testing, it
can be a pretty handy way of breaking dependencies.

This sort of dynamic linking can be done in many languages. In most, there
is some way to exploit link seams. But not all linking is dynamic. In many older
languages, nearly all linking is static; it happens once after compilation.

Many C and C++ build systems perform static linking to create executables.
Often the easiest way to use the link seam is to create a separate library for any
classes or functions you want to replace. When you do that, you can alter your
build scripts to link to those rather than the production ones when you are test-
ing. This can be a bit of work, but it can pay off if you have a code base that is
littered with calls to a third-party library. For instance, imagine a CAD applica-
tion that contains a lot of embedded calls to a graphics library. Here is an
example of some typical code:

void CrossPlaneFigure::rerender()
{
 // draw the label
 drawText(m_nX, m_nY, m_pchLabel, getClipLen());
 drawLine(m_nX, m_nY, m_nX + getClipLen(), m_nY);
 drawLine(m_nX, m_nY, m_nX, m_nY + getDropLen());
 if (!m_bShadowBox) {
 drawLine(m_nX + getClipLen(), m_nY,
 m_nX + getClipLen(), m_nY + getDropLen());
 drawLine(m_nX, m_nY + getDropLen(),
 m_nX + getClipLen(), m_nY + getDropLen());
 }

 // draw the figure
 for (int n = 0; n < edges.size(); n++) {
 ...
 }

 ...
}

This code makes many direct calls to a graphics library. Unfortunately, the
only way to really verify that this code is doing what you want it to do is to

Suppose we wanted to supply a different version of the Parse class for testing. Where
would the seam be?

The seam is the new Parse call in the process method.

Where is the enabling point?

The enabling point is the classpath.

SEAM TYPES 39

Seam Types

look at the computer screen when figures are redrawn. In complicated code,
that is pretty error prone, not to mention tedious. An alternative is to use link
seams. If all of the drawing functions are part of a particular library, you can
create stub versions that link to the rest of the application. If you are interested
in only separating out the dependency, they can be just empty functions:

void drawText(int x, int y, char *text, int textLength)
{
}

void drawLine(int firstX, int firstY, int secondX, int secondY)
{
}

If the functions return values, you have to return something. Often a code
that indicates success or the default value of a type is a good choice:

int getStatus()
{
 return FLAG_OKAY;
}

The case of a graphics library is a little atypical. One reason that it is a good
candidate for this technique is that it is almost a pure “tell” interface. You issue
calls to functions to tell them to do something, and you aren’t asking for much
information back. Asking for information is difficult because the defaults often
aren’t the right thing to return when you are trying to exercise your code.

Separation is often a reason to use a link seam. You can do sensing also; it
just requires a little more work. In the case of the graphics library we just faked,
we could introduce some additional data structures to record calls:

std::queue<GraphicsAction> actions;

void drawLine(int firstX, int firstY, int secondX, int secondY)
{
 actions.push_back(GraphicsAction(LINE_DRAW,
 firstX, firstY, secondX, secondY);
}

With these data structures, we can sense the effects of a function in a test:

TEST(simpleRender,Figure)
{
 std::string text = "simple";
 Figure figure(text, 0, 0);

 figure.rerender();
 LONGS_EQUAL(5, actions.size());

40 THE SEAM MODEL

Seam Types

 GraphicsAction action;
 action = actions.pop_front();
 LONGS_EQUAL(LABEL_DRAW, action.type);

 action = actions.pop_front();
 LONGS_EQUAL(0, action.firstX);
 LONGS_EQUAL(0, action.firstY);
 LONGS_EQUAL(text.size(), action.secondX);
}

The schemes that we can use to sense effects can grow rather complicated,
but it is best to start with a very simple scheme and allow it to get only as com-
plicated as it needs to be to solve the current sensing needs.

The enabling point for a link seam is always outside the program text. Some-
times it is in a build or a deployment script. This makes the use of link seams
somewhat hard to notice.

Object Seams

Object seams are pretty much the most useful seams available in object-oriented
programming languages. The fundamental thing to recognize is that when we
look at a call in an object-oriented program, it does not define which method
will actually be executed. Let’s look at a Java example:

cell.Recalculate();

When we look at this code, it seems that there has to be a method named
Recalculate that will execute when we make that call. If the program is going to
run, there has to be a method with that name; but the fact is, there can be more
than one:

Usage Tip

If you use link seams, make sure that the difference between test and production envi-
ronments is obvious.

SEAM TYPES 41

Seam Types

Figure 4.1 Cell hierarchy.

Which method will be called in this line of code?

cell.Recalculate();

Without knowing what object cell points to, we just don’t know. It could be
the Recalculate method of ValueCell or the Recalculate method of FormulaCell. It
could even be the Recalculate method of some other class that doesn’t inherit
from Cell (if that’s the case, cell was a particularly cruel name to use for that
variable!). If we can change which Recalculate is called in that line of code with-
out changing the code around it, that call is a seam.

In object-oriented languages, not all method calls are seams. Here is an
example of a call that isn’t a seam:

public class CustomSpreadsheet extends Spreadsheet
{
 public Spreadsheet buildMartSheet() {
 ...
 Cell cell = new FormulaCell(this, "A1", "=A2+A3");
 ...
 cell.Recalculate();
 ...
 }
 ...
}

In this code, we’re creating a cell and then using it in the same method. Is the
call to Recalculate an object seam? No. There is no enabling point. We can’t
change which Recalculate method is called because the choice depends on the
class of the cell. The class of the cell is decided when the object is created, and
we can’t change it without modifying the method.

What if the code looked like this?

{abstract}
Cell

+ Recalculate()

ValueCell

+ Recalculate()

FormulaCell

+ Recalculate()

42 THE SEAM MODEL

Seam Types

public class CustomSpreadsheet extends Spreadsheet
{
 public Spreadsheet buildMartSheet(Cell cell) {
 ...
 cell.Recalculate();
 ...
 }
 ...
}

Is the call to cell.Recalculate in buildMartSheet a seam now? Yes. We can cre-
ate a CustomSpreadsheet in a test and call buildMartSheet with whatever kind of
Cell we want to use. We’ll have ended up varying what the call to cell.Recalcu-
late does without changing the method that calls it.

Where is the enabling point?
In this example, the enabling point is the argument list of buildMartSheet.

We can decide what kind of an object to pass and change the behavior of
Recalculate any way that we want to for testing.

Okay, most object seams are pretty straightforward. Here is a tricky one. Is
there an object seam at the call to Recalculate in this version of buildMartSheet?

public class CustomSpreadsheet extends Spreadsheet
{
 public Spreadsheet buildMartSheet(Cell cell) {
 ...
 Recalculate(cell);
 ...
 }

 private static void Recalculate(Cell cell) {
 ...
 }

 ...
}

The Recalculate method is a static method. Is the call to Recalculate in
buildMartSheet a seam? Yes. We don’t have to edit buildMartSheet to change
behavior at that call. If we delete the keyword static on Recalculate and make
it a protected method instead of a private method, we can subclass and over-
ride it during test:

public class CustomSpreadsheet extends Spreadsheet
{
 public Spreadsheet buildMartSheet(Cell cell) {
 ...
 Recalculate(cell);
 ...
 }

SEAM TYPES 43

Seam Types

 protected void Recalculate(Cell cell) {
 ...
 }

 ...
}

public class TestingCustomSpreadsheet extends CustomSpreadsheet {
 protected void Recalculate(Cell cell) {
 ...
 }
}

Isn’t this all rather indirect? If we don’t like a dependency, why don’t we just
go into the code and change it? Sometimes that works, but in particularly nasty
legacy code, often the best approach is to do what you can to modify the code
as little as possible when you are getting tests in place. If you know the seams
that your language offers and how to use them, you can often get tests in place
more safely than you could otherwise.

The seams types I’ve shown are the major ones. You can find them in many
programming languages. Let’s take a look at the example that led off this chap-
ter again and see what seams we can see:

bool CAsyncSslRec::Init()
{
 if (m_bSslInitialized) {
 return true;
 }
 m_smutex.Unlock();
 m_nSslRefCount++;

 m_bSslInitialized = true;

 FreeLibrary(m_hSslDll1);
 m_hSslDll1=0;
 FreeLibrary(m_hSslDll2);
 m_hSslDll2=0;

 if (!m_bFailureSent) {
 m_bFailureSent=TRUE;
 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);
 }

 CreateLibrary(m_hSslDll1,"syncesel1.dll");
 CreateLibrary(m_hSslDll2,"syncesel2.dll");

 m_hSslDll1->Init();
 m_hSslDll2->Init();

return true;
}

44 THE SEAM MODEL

Seam Types

What seams are available at the PostReceiveError call? Let’s list them.

1. PostReceiveError is a global function, so we can easily use the link seam
there. We can create a library with a stub function and link to it to get
rid of the behavior. The enabling point would be our makefile or some
setting in our IDE. We’d have to alter our build so that we would link
to a testing library when we are testing and a production library when
we want to build the real system.

2. We could add a #include statement to the code and use the preprocessor
to define a macro named PostReceiveError when we are testing. So, we
have a preprocessing seam there. Where is the enabling point? We can
use a preprocessor define to turn the macro definition on or off.

3. We could also declare a virtual function for PostRecieveError like we did
at the beginning of this chapter, so we have an object seam there also.
Where is the enabling point? In this case, the enabling point is the place
where we decide to create an object. We can create either an CAsyncSsl-
Rec object or an object of some testing subclass that overrides PostRe-
cieveError.

It is actually kind of amazing that there are so many ways to replace the
behavior at this call without editing the method:

bool CAsyncSslRec::Init()
{

...
 if (!m_bFailureSent) {
 m_bFailureSent=TRUE;
 PostReceiveError(SOCKETCALLBACK, SSL_FAILURE);
 }
 ...

 return true;
}

It is important to choose the right type of seam when you want to get pieces
of code under test. In general, object seams are the best choice in object-oriented
languages. Preprocessing seams and link seams can be useful at times but they
are not as explicit as object seams. In addition, tests that depend upon them can
be hard to maintain. I like to reserve preprocessing seams and link seams for
cases where dependencies are pervasive and there are no better alternatives.

When you get used to seeing code in terms of seams, it is easier to see how to
test things and to see how to structure new code to make testing easier.

423

Index

#include directives, 129

A
abbreviations, 284
access protection, subverting, 141
Account, 120, 364
ActionEvent class, 145
ACTIOReportFor, 108
Adapt Parameter, 142, 326-329
adapting parameters, 326-329
addElement, 160
AddEmployeeCmd, 279

getBody, 280
write method, 274

adding features. See
features, adding

AGGController, 339-341
algorithms for changing legacy code, 18

breaking dependencies, 19
finding test points, 19
identifying change points, 18
refactoring, 20
writing tests, 19

aliased parameters, getting classes into
test harnesses, 133-136

analyzing effects, 167-168
API calls. See also libraries

restructuring, 199-201, 203-207
skinning and wrapping, 205-207

application architecture, preserving,
215-216

conversation concepts, 224

Naked CRC, 220-223
telling story of system,

216-220
architecture of system, preserving,

215-216
conversation concepts, 224
Naked CRC, 220-223
telling story of system, 216-220

automated refactoring
monster methods, 294-296
tests, 46-47

automated tests, 185-186
characterization tests, 186-189

for classes, 189-190
heuristic for writing, 195
targeted testing, 190-194

B
Beck, Kent, 48, 220
behavior, 5

preserving, 7
behavior of code. See characterization

tests 188
BindName method, 337
BondRegistry, 367
Brant, John, 45
Break Out Method Object, 137, 330-336

monster methods, 304
breaking

dependencies, 19-25, 79-85, 135
Interception Points, 174-182

breaking up classes, 183

424 INDEX

bug finding
versus characterization tests, 188
when to fix bugs, 190

bugs, fixing in software, 4-6
build dependencies, breaking,

80-85
buildMartSheet, 42
bulleted methods, 290

C
C macro preprocessor, testing procedural

code, 234-236
C++, 127

compilers, 127
effect reasoning tools, 166
Template Redefinition, 410

calls, 348-349
CCAImage, 139-140
cell.Recalculate, 40
change points, identifying, 18
changing software. See software, changing

characterization tests, 151, 157, 186-189
for classes, 189-190
heuristic for writing, 195
targeted testing, 190-194

characters, writing null
characters, 272

classes
Account, 364
ActionEvent, 145
AddEmployeeCmd, 279
AGGController, 339
big classes, 247

extracting classes from, 268
problems with, 245
refactoring, 246
responsibilities. See

responsibilities
breaking up, 183
CCAImage, 139-140
characterization tests, 189-190
ClassReader, 155
Command, 281-282
Coordinate, 165-166
CppClass, 156
ExternalRouter, 373
extracting, 268

to current class first monster
methods, 306

fakeConnection, 110
getting into test harnesses

aliased parameters, 133-136
global dependency, 118-126
hidden dependency, 113-116
huge parameter lists, 116-118
include dependencies, 127-130
parameters, 106-113,

130-132
IndustrialFacility, 135
instances, 122
interfaces, extracting, 80
LoginCommand. See LoginCommand
ModelNode, 357
naming conventions, 227-228
once dilemma, 198
OriginationPermit, 134-135
Packet, 345
PaydayTransaction, 362
ProductionModelNode, 358
RuleParser, 250
Scheduler, 128
SymbolSource, 150
test harnesses, parameters, 113
testing subclasses, 227, 390

ClassReader, 155
code

editing. See editing code
effect propagation, 164-165
modularity, 29
preparing for changes, 157-163
test code versus production

code, 110
code reuse

avoiding library dependencies,
197-198

restructuring API calls, 199-207
collaborating fakes, mock

objects, 27-28
Command class, 281-282

write method, 277
writeBody method, 285

Command/Query Separation, 147-149
commandChar variable, 276-277
CommoditySelectionPanel, 296
compilers

C++, 127
editing code, 315-316

compiling Scheduler, 129

INDEX 425

completing definitions, 337-338
Composed Method (testing changes), 69
concrete class dependencies versus

interface dependencies, 84
const keyword, 164
constructors, Parameterize Constructor,

379-382
conventions, class naming conventions,

227-228
Coordinate class, 165-166
coordinates, 165
coupling count, 301-302
Cover and Modify, 9
Coverage, 13
CppClass, 156
CppUnitLite, 50-52
CRC (Class, Responsibility, and

Collaborations), Naked CRC, 220-223
CreditMaster, 107-108
CreditValidator, 107
Cunningham, Ward, 220
cursors, 116

D
data type conversion errors,

193-194
db_update, 36
debugging. See bug finding
decisions, looking for, 251
declarations, 154
decorator pattern, 72-73
Definition Completion, 337-338
definitions, completing, 337-338
dejection, overcoming, 319-321
delegating instance methods, 369-376
deleting unused code, 213
dependencies, 16, 18, 21

avoiding, 197-198
breaking. See breaking; dependency-

breaking techniques
getting classes into test harnesses,

113-116
gleaning from monster methods, 303
global dependencies, getting classes

into test harnesses, 118-126

include dependencies, getting classes
into test harnesses, 127-130

in procedural code, avoiding,
236-239

Push Down Dependency, 392-395
restructuring API calls,

199-207
dependency-breaking techniques

Adapt Parameter, 326-329
Break Out Method Object, 330-336
Definition Completion, 337-338
Encapsulate Global References, 339-

344
Expose Static Method, 345-347
Extract and Override Call, 348-349
Extract and Override Factory

Method, 350-351
Extract and Override Getter,

352-355
Extract Implementer, 356-361
Extract Interface, 362-368
Introduce Instance Delegator,

369-371
Introduce Static Setter, 372-376
Link Substitution, 377-378
Parameterize Constructor, 379-382
Parameterize Methods, 383-384
Primitivize Parameter, 385-387
Pull Up Feature, 388-391
Push Down Dependency, 392-395
Replace Function with Function

Pointer, 396-398
Replace Global Reference with

Getter, 399-400
Subclass and Override Method,

401-403
Supersede Instance Variable, 404- 407
Template Redefinition, 408- 411
Text Redefinition, 412-413

design, improving software design. See
refactoring

directories, locations for test code,
228-229

draw(), Renderer, 332
duplication, 269-271

removing, 93-94, 272-287
renaming classes, 284

426 INDEX

E
Edit and Pray, 9
Edit and Pray programming, 246
editing code

compilers, 315-316
hyperaware editing, 310
Pair Programming, 316
preserving signatures, 312-314
single-goal editing, 311-312

effect analysis
IDE support for, 152
learning from, 167-168

effect propagation, 163-165
preventing, 165

effect reasoning, 152-157
tools for, 165-167

effect sketches, 155, 254
pinch points, 108-184

effect sketches, simplifying, 168-171
effects, encapsulation, 171
effects of change, understanding, 212
Elements, 158
elements

addElement, 160
generateIndex, 159

enabling points, 36
Encapsulate Global References, 239, 315-

316, 339-344
encapsulating global references, 339-344
encapsulation, effects, 171
encapsulation boundaries, pinch points as,

182-183
error localization, 12
errors

changing software, 14-18
type conversion, 193-194

evaluate method, 248
exceptions, throwing, 89
execution time, 12
Expose Static Method, 137, 330,

345-347
exposing static methods, 345-347
ExternalRouter, 373
Extract and Override Call,

348-349

Extract and Override Factory Method,
116, 350-351

Extract and Override Getter, 352,
354-355

Extract Implementer, 71, 74,
80-82, 85, 117, 131, 356-361

Extract Interface, 17, 71, 74, 80, 85,
112-114, 117, 131, 135, 326, 333,
362-368

Extract Method (refactoring), 415-419
extracting

calls, 348-349
classes, 268
to current class first, monster methods

306
factory method, 350-351
getters, 352-355
implementers, 356-361
interfaces, 362-368
monster methods, 301-302
small pieces, monster methods, 306

extracting interfaces, 80
extracting methods, 212

refactoring tools, 195
Responsibility-Based Extraction, 206-

207
targeted testing, 190-194

extractions, redoing in monster
methods, 307

F
factory method, 350-351
failing test cases, writing, 88-91
fake objects, 23-27

distilling fakes, 27
tests, 26

FakeConnection class, 110
fakes

collaborating mock objects, 27-28
distilling, 27
fake objects. See fake objects

feature sketches, 252-254
features, adding, 87

with programming by difference,
94-104

with test-driven development (TDD),
88-94

INDEX 427

FeeCalculator, 259
feedback, 11

testing. See testing
feedback lag time, effect on length of time

for changes, 78-79
file inclusion, testing procedural code,

234-236
finding

sequences, monster methods,
305-306

test points, 19
FIT (Framework for

Integration), 53
fit.Fixture, 37
fit.Parse, 37
Fitnesse, 53
fixing bugs in software, 3-4
formConnection method, 404
formStyles method, 349
Fowler, Martin, 325
Framework for Integration Tests
(FIT), 53
Frameworks, 118

global dependency, 118-126
function pointers

replacing, 396-398
testing procedural code, 238-239

functional changes, 310
functions

PostReceiveError, 31
replacing with function pointers, 396-

398
run(), 132
send message, 114
SequenceHasGapFor, 386
substituting, 377-378

G
Gamma, Erich, 48
GDIBrush, 333-334
GenerateIndex, 158-162

elements, 159
generating indexes, 158
getBalance, 120

getBalancePoint(), 152
getBody, AddEmployeeCmd, 280
getDeadTime, 389
getDeclarationCount(), 153
getElement, 160, 163
getElementCount, 160, 163
getInstance method, 120
getInterface, 154
getKSRStreams, 142
getLastLine(), 27
getName, 153
getters

extracting, 352-355
lazy getters, 354
overriding, 352-355
replacing global references, 399-400

getValidationPercent, 106, 110
Gleaning Dependencies, monster methods,

303
global dependency, getting classes into test

harnesses, 118-126
global references

encapsulating, 339-344
replacing with getters, 399-400

graphics libraries, link seams, 39
grouping methods, 249

H
hidden methods, 250

getting methods into test harnesses,
138-141

hierarchies, permits, 134
higher-level testing, 14, 173-174

Interception Points, 174-182
HttpFileCollection, 141
HttpPostedFile objects, 141
HttpServletRequest, 327
hyperaware editing, 310

I
IDE, support for effect

analysis, 152
identifying change points, 18
implementers, extracting, 356-361

428 INDEX

include dependencies, getting classes into
test harnesses, 127-130

independence, removing duplication, 285
indexes, generating, 158
IndustrialFacility, 135
inheritance, programming by difference,

94-104
InMemoryDirectory, 158, 161
instances

classes, 122
Introduce Instance Delegator,

369-376
Supersede Instance Variable,
404-407
testing, 123

PermitRepository, 121
Interception Points, 174-182
Interface Segregation Principle (ISP), 263
interfaces, 132

dependencies versus concrete class
dependencies, 84

extracting, 80, 362-368
naming, 364
ParameterSource, 327
segregating, 264

internal relationships, looking for, 251
Introduce Instance Delegator, 369-371
Introduce Sensing Variable, 298-301
Introduce Static Setter, 122, 126, 341,

372-376
ISP (Interface Segregation

Principle), 263

J
Jeffries, Ron, 221
JUnit, 49-50, 217

K
keywords

const, 164
mutable, 167

knobs, 287

L
lag time, effect on length of time for

changes, 78-79

language features, getting methods into
test harnesses, 141-144

lazy getters, 354
Lean on the Compiler, 125, 143, 315
legacy code, changing algorithms, 18

breaking dependencies, 19
finding test points, 19
identifying change points, 18
refactoring, 20
writing tests, 19

legacy systems versus well-maintained
systems, understanding of code, 77

length of time for changes, 77
breaking dependencies, 79-85
reasons for, 77-79
test harness usage, 57-59

Sprout Class, 63-67
Sprout Method, 59-63
Wrap Class, 71-76
Wrap Method, 67-70

libraries. See also API calls
dependencies, avoiding, 197-198
graphics libraries, link
seams, 39
mock object libraries, 47

Link Seam, testing procedural code,
233-234

link seams, 36-40
Link Substitution, 342, 377-378
Liskov substitution principle (LSP)

violation, 101
listing markup for understanding code,

211-212
LoginCommand, 278

write method, 272-273
LSP (Liskov substitution principle)

violation, 101

M
macro preprocessor, testing procedural

code, 234-236
mail service, 113-114
manual refactoring, monster methods, 297

Break Out Method
Object, 304
extracting, 301-302

INDEX 429

Gleaning Dependencies, 303
Introduce Sensing Variable, 298-301

marking up listings for understanding
code, 211-212

MessageForwarder, 401
method objects, breaking out, 330-336

from monster methods, 304
method use rule, 189
methods

ACTIOReportFor, 108
BindName, 337
draw(), Renderer, 332
effects of change,
understanding, 212
evaluate, 248
Extract Method (refactoring),

415-419
extracting, 212
formConnection method, 404
formStyles, 349
getBalancePoint(), 152
getBody, AddEmployeeCmd, 280
getDeclarationCount(), 153
getElement, 160, 163
getElementCount, 160, 163
getInstance, 120
getInterface, 154
getKSRStreams, 142
getting into test harnesses

hidden methods, 138-141
language features, 141-144
side effects, 144-150

getValidationPercent, 110
grouping methods, 249
hidden methods, 138-141, 250
lazy getters, 354
monster methods. See monster

methods
non-virtual methods, 367
Parameterize Method,

383-384
performCommand, 147-149
populate, 326
private methods, testing for, 138
public methods, 138
readToken, 157
recalculate, 306
recordError, 366

resetForTesting(), 122
Responsibility-Based Extraction,

206-207
restricted override dilemma, 198
RFDIReportFor, 108
scan(), 23-25
setUp, 50
showLine, 25
snap(), 139
Sprout Method, 246
static methods, exposing,
345-347
Subclass and Override Method,

401-403
suspend frame, 339
targeted testing, 190-194
tearDown, 375
testEmpty, 49
understanding structure
of, 211
update, 296
updateBalance, 370
validate, 136, 345
write, 273-275

AddEmployeeCmd, 274
Command class, 277
LoginCommand, 272-273

writeBody, 281
Command class, 285

writing tests for, 137
migrating to object orientation, 239-244
Mike Hill, 51
mock objects, 27-28, 47
ModelNode class, 357
modularity, 29
monster methods, 289

automated refactoring,
294-296

bulleted methods, 290
extracting small pieces, 306
extracting to current class first, 306
finding sequences, 305-306
manual refactoring. See manual

refactoring
redoing extractions, 307
skeletonize methods, 304-305
snarled methods, 292-294

morale, increasing, 319-321

430 INDEX

mutable, 167

N
Naked CRC, 220-223
naming, 356

interfaces, 364
naming conventions

abbreviations, 284
classes, 227-228

new constructors, 381
non-virtual methods, 367
normalized hierarchy, 103
null characters, 272
Null Object Pattern, 112
NullEmployee, 112
nulls, 111-112
NUnit, 52

O
object orientation, migrating to, 239-244
object seams, 33, 40-44, 239, 369
objects

creating, 130
fake objects, 23-27

distilling, 27
tests, 26

HttpFileCollection, 141
HttpPostedFile, 141
mail service, 113-114
mock objects, 27-28, 47

once dilemma, 198
OO languages, C++, 127
Opdyke, Bill, 45
open/closed principle, 287
optimization, changing software, 6
OriginationPermit, 134-135
Orthogonality, 285
overriding

calls, 348-349
factory method, 350-351
getters, 352-355

overwhelming feelings, overcoming,
319-321

P
Packet class, 345

PageLayout, 348
Pair Programming, 316
paper view, 402
parameter lists, getting classes into test

harnesses, 116-118
Parameterize Constructor, 114-116, 126,

171, 242, 341, 379-382
Parameterize Method, 341, 383-384
parameters

adapting, 326-329
aliased parameters, 133-136
getting classes into test harnesses,

106-113, 130-132
Parameterize Constructor, 379-382
Parameterize Method, 383-384
Primitivize Parameter, 385-387

ParameterSource, 327
Pass Null, 62, 111-112, 131
passing nulls 112
patterns

Null Object Pattern, 112
Singleton Design Pattern, 372

PaydayTransaction class, 362
performCommand, 147-149
Permit, hierarchies, 134
PermitRepository, 120-125
pinch points, 80

as encapsulation boundaries,
182-183
testing with, 180-184

pointers. See function pointers
populate method, 326
PostReceiveError, 31, 44
preparing for changes to code, 157-163
preprocessing seams, 33-36, 130
Preserve Signatures, 70, 240, 312-314,

331
preserving

behavior, 7
signatures, 312-314

preventing effect propagation, 165
primary responsibilities, looking for, 260
Primitivize Parameter, 17, 385-387
principles, open/closed

principle, 287

INDEX 431

private methods, testing for, 138
problems with big classes, 245
procedural code, testing, 231-232

with C macro preprocessor, 234-36
with file inclusion, 234-236
function pointers, 238-239
with Link Seam, 233-234
migrating to object orientation,
239-244
Test-Driven Development (TDD),

236-238
production code versus test code, 110
ProductionModelNode, 358
programming, rediscovering fun in,

319-321
programming by difference, 94-104
propagating effects. See effect propagation
public methods, 138
Pull Up Feature, 388-391
Push Down Dependency, 392-395

R
readToken method, 157
reasoning

effect reasoning, 152-157
tools for, 165-167

reasoning forward, 157-163
reasoning forward, 157-163
Recalculate, 40-42
recalculate method, 306
recordError, 366
redefining

templates, 408-411
text, 412-413

redoing extractions, monster
methods, 307

refactoring, 5, 20, 45, 415
automated refactoring

monster methods, 294-296
and tests, 46-47

big classes, 246
Extract Method, 415-419
manual refactoring, monster

methods, 297-301

scratch refactoring, 264
refactoring tools, 45-46, 195

scratch refactoring for understanding
code, 212-213

Refactoring: Improving the Design of
Existing Code (Fowler), 415

references, Encapsulate Global References,
339-344

regression testing, 10-11
relationships, looking for internal

relationships, 251
removing duplication, 93-94, 272-287
renaming classes, 284
renderer, draw(), 332
Replace Function with Function Pointer,

396-398
Replace Global Reference with Getter,

399-400
replacing

functions with function pointers,
396-398

global references with getters,
399-400

Reservation, 256-257
resetForTesting(), 122
responsibilities, 249

decisions, looking for decisions that
can change, 251

grouping methods, 249
hidden methods, 250
internal relationships, 251-253
ISP (Interface Segregation Principle),

263
looking for primary
responsibility, 260
primary responsibilities, 260
scratch factoring, 264
segregating interfaces, 264
separating, 211
strategy for dealing with, 265
tactics for dealing with, 266-268

Responsibility-Based Extraction,
206-207

restricted override dilemma, 198
return values, effect propagation 163
RFDIReportFor, 108

432 INDEX

RGHConnections, 107-109
risks of changing software, 7-8
Roberts, Don, 45
RuleParser class, 250
run(), 132

S
safety nets, 9
scan(), 23-25
Scheduler, 128-129, 391

compiling, 129
SchedulerDisplay, 130
SchedulingTask, 131-132
scratch refactoring, 264

for understanding code, 212-213
seams, 30-33

enabling points, 36
link seams, 36-40
object seams, 33, 40-44
preprocessing seams, 33-36

segregating interfaces, 264
send message function, 114
sensing, 21-22
sensing variables, 301, 304
separating responsibilities, 211
separation, 21-22
SequenceHasGapFor, 386
sequences, finding in monster methods,

305-306
setSnapRegion, 140
setTestingInstance, 121-123
setUp method, 50
showLine, 25
side effects, getting methods into test

harnesses, 144-150
signatures, preserving, 312-314
simplifying

effect sketches, 168-171
system architecture, 216-220

single responsibility principle (SRP), 99,
246-248, 260-262

single-goal editing, 311-312
Singleton Design Pattern,

120, 372
skeletonize methods, 304-305

sketches
effect sketches, simplifying, 168-171
for understanding code, 210-211
Reservation, 255

skinning and wrapping API calls,
205-207
Smalltalk, 45
snap(), 139
snarled methods, 292-294
software

behavior, 5
changing, 3-8
risks of, 7-8

test coverings, 14-18
software vise, 10
Sprout Class (testing changes), 63-67
Sprout Method (testing changes) 59-63,

246
SRP (single responsibility principle),

246-248, 260-262
static cling, 369
static methods, 346

exposing, 345-347
strategies

for dealing with responsibilities, 265
for monster methods

extracting small pieces, 306
extracting to current class
first, 306
finding sequences, 305-306
redoing extractions, 307
skeletonize methods,
304-305

Subclass and Override Method, 112, 125,
136, 401-403

Subclass to Override, 148
subclasses

Subclass and Override Method,
401-403

testing subclasses, 390
subclassing, programming by difference,

95-96
substituting functions, 377-378
subverting access protection, 141
Supercede Instance Variable, 117-118,

404-407

INDEX 433

suspend frame method, 339
SymbolSource, 150
system architecture, preserving, 215-216

conversation concepts, 224
Naked CRC, 220-223
telling story of system, 216-220

T
tactics for dealing with responsibilities,

266-268
targeted testing, 190-194
TDD (Test-Driven Development), 20,

88-94, 236-238
tearDown method 375
techniques, dependency-breaking

techniques. See dependency-breaking
techniques

Template Redefinition, 408-411
templates, redefining, 408-411
temporal coupling, 67
test code versus production code, 110
test harnesses, 12

adding features, 87
and length of time for changes, 57-59

Sprout Class, 63-67
Sprout Method, 59-63
Wrap Class, 71-76
Wrap Method, 67-70

breaking dependencies, 79-85
FIT, 53
Fitnesse, 53
getting classes into

aliased parameters, 133-136
global dependency, 118-126
hidden dependency, 113-116
huge parameter lists, 116-118
include dependencies, 127-130
parameters, 106-112, 130-132

getting methods into
hidden methods, 138-141
language features, 141-144
side effects, 144-150

test points, finding 19
Test-Driven Development (TDD), 20, 60,

64, 70, 88-94, 236-238, 310
testEmpty method, 49
TESTING, 36

testing, 9
around changes, 14-18
higher-level testing, 14
instances, 121-123
for private methods, 138
procedural code, 231-232

function pointers, 238-239
migrating to object orientation,

239-244
Test-Driven Development

(TDD), 236-238
with C macro preprocessor,

234-236
with file inclusion, 234-236
with Link Seam, 233-234

regression testing, 10-11
test harnesses, 12
unit testing, 12-14
unit-testing harnesses, 48

CppUnitLite, 50-52
JUnit, 49-50
NUnit, 52

testing subclasses, 227, 390
TestingPager, 405
tests

automated refactoring, 46-47
automated tests, 185-186

characterization tests, 186-190,
195

targeted testing, 190-194
Characterization Tests, 151, 157
class naming conventions, 227-228
directory locations for, 228-229
fake objects, 26
higher-level tests, 173-174

Interception Points, 174-182
method use rule, 189
unit tests, pinch point traps, 184
writing, 19

for methods, 137
text, redefining, 412-413
Text Redefinition, 412-413
throwing exceptions, 89
time for changes, length of. See length of

time for changes
tools

for effect reasoning, 165-167
refactoring tools, 45-46

434 INDEX

unit-testing harnesses, 48
CppUnitLite, 50-52
JUnit, 49-50
NUnit, 52

TransactionLog, 366
TransactionManager, 350
TransactionRecorder, 365
type conversion errors, 193-194

U
UML notation, 221
understanding code, 209

deleting unused code, 213
effect on length of time for changes,

77-78
listing markup, 211-212
scratch refactoring, 212-213
sketches, 210-211

unit testing, 12-14
unit tests, pinch point traps, 184
unit-testing harnesses, 48

CppUnitLite, 50-52
JUnit, 49-50
NUnit, 52

unused code, deleting, 213
update method, 296
updateBalance, 370

V
validate method, 136, 345
variables

commandChar, 276-277
effects of change, 212
Reservation class, 253
sensing variables, 301
Supersede Instance Variable,

404-407
vise, 10

W
well-maintained systems versus legacy

systems, understanding of code, 77
WorkflowEngine, 350
Wrap Class (testing changes), 71-76
Wrap Method (testing changes), 67-70
wrapping, skinning and wrapping API

calls, 205-207
write method, 273-275

AddEmployeeCmd, 274
Command class, 277
LoginCommand, 272-273

writeBody method, 281
Command class, 285

writing
null characters, 272
tests, 19

for methods, 137

X
xUnit, 48, 52

	Contents
	Foreword
	Preface
	Introduction
	PART I: The Mechanics of Change
	Chapter 1: Changing Software
	Four Reasons to Change Software
	Risky Change

	Chapter 4: The Seam Model
	A Huge Sheet of Text
	Seams
	Seam Types

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

